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Discontinuous Petrov–Galerkin (DPG) methodology, introduced by Demkowicz and Gopalakrishnan in
their seminal work Demkowicz and Gopalakrishnan (2010), has become an integral tool in the compu-
tational mechanics field. In this paper, we extend the application of the DPG method to address a new
domain, namely, the pricing of financial options and their sensitivity analysis within the framework of
the Black-Scholes model. We present an innovative adaptation of the DPG method, incorporating both
its primal and ultraweak formulations, to analyze an array of option types: Vanilla, American, Asian, and
Barrier options. This robust mathematical framework provides a comprehensive toolkit for understand-
ing and dissecting these complex financial instruments. A set of numerical experiments is carried out to
assess the method’s convergence, stability, and efficiency when applied to each option type independently.
These rigorous tests serve to validate the effectiveness of our approach and attest to its suitability for
tackling various option pricing challenges.
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1. Introduction

Since their discovery in 1970, the option pricing formula developed by Black and Scholes Black and
Scholes (1973) and Merton Merton (1973), known as the classical Black-Scholes (or BS-Merton)
model, has garnered significant attention from academia and practitioners. This formula, which
earned Black and Scholes the Nobel Prize in Economics Ferreyra (1998), serves as a fundamental
tool for pricing options and has become widely utilized by investors as a means to devise risk-
protected strategies against fluctuations in the price of underlying assets. Moreover, market makers
rely on option price sensitivities, commonly known as Greeks, to design optimal hedges for their
positions.

However, obtaining analytical solutions for pricing financial instruments, with a few exceptions,
remains elusive. Among these instruments, exotic options, which are path-dependent derivatives,
present particularly challenging valuation problems. American-style options, Asian options, and
Barrier options exemplify the complexity associated with pricing these types of hedging devices,
making analytical pricing infeasible.
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Consequently, researchers have endeavored to develop efficient numerical methods for option
pricing as a natural remedy since the inception of the Black-Scholes model in 1970. Noteworthy
among these methods are analytical approximations Barone-Adesi and Whaley (1987), Geske and
Johnson (1984), stochastic mesh methods Broadie et al. (2004), Monte Carlo methods Boyle et al.
(1997), Boyle (1977), Acworth et al. (1998), lattice-based methods employing finite element and
finite difference techniques for solving corresponding partial differential equations Achdou and
Pironneau (2005), Chiarella et al. (2014), Duffy (2013), Seydel and Seydel (2006), Tavella and
Randall (2000), as well as mesh-free methods Kim et al. (2014), Fasshauer et al. (2004), Bastani
et al. (2013).

Among these numerical methods, the weighted residual methods, specifically Galerkin methods,
have consistently captivated the interest of the scientific community Seydel and Seydel (2006),
Achdou and Pironneau (2005) due to their undeniable merits in solving differential equations.
Galerkin methods possess numerous advantages, including an elaborate and comprehensible the-
ory for prior and posterior error estimation. Consequently, these methods find particular relevance
in quantitative finance, where path-dependent options can benefit from well–understood error esti-
mates to adaptively refine the mesh in their respective domains. Examples where the strengths of
variational methods can be readily exploited include American options near the optimal exercise
boundary or multi-factor options with intricate domains Seydel and Seydel (2006), Achdou and
Pironneau (2005).

The Black-Scholes partial differential equation (PDE), representing a time-dependent parabolic
PDE of the convection-diffusion type, stands as the state-of-the-art model in option pricing. How-
ever, it is well–documented in the literature (Ern and Guermond (2004), Strang et al. (1974), and
Douglas and Russell (1982), among others) that this class of problems can exhibit numerical in-
stability when the coercivity condition is violated, often due to the small coefficients associated
with the second-order differential operator. This instability can manifest as a loss of accuracy or
oscillatory behavior in the computed solution.

In response to these challenges, the discontinuous Petrov-Galerkin (DPG) method with optimal
test space was developed by Demkowicz and Golapalakrishnan Demkowicz and Gopalakrishnan
(2010). Since its introduction, the DPG method has found extensive use in the numerical solution of
differential equations, particularly convection-dominated diffusion problems Demkowicz and Heuer
(2013), Ellis et al. (2016), Chan et al. (2014), Chan (2013), as well as PDE-constraint optimization
problems Bui-Thanh and Ghattas (2014), Causin and Sacco (2005) encountered in computational
mechanics.

The DPG method is designed with an optimal test space, which is distinct from the trial space,
through a projection onto a continuous space. This design ensures the continuity and coercivity
of the discrete scheme, provided that the test and trial spaces meet certain regularity conditions
across any mesh. Additionally, the method incorporates a built-in error indicator that supports
automatic adaptivity.

Viewed as a minimum residual method, the DPG method consistently yields a symmetric (Hermi-
tian) positive definite stiffness matrix. This feature is particularly beneficial for developing iterative
solution algorithms, such as those used for solving variational inequalities in pricing American-type
options.

In this paper, motivated by the unconditional stability and solid mathematical theory of the
DPG method, we propose its application to the problem of option pricing and Greeks estimation
within the Black-Scholes model. Specifically, we present both ultraweak and primal formulations of
the DPG method for pricing Vanilla options, American options, Asian options, and double Barrier
options, as well as their sensitivity analysis. We focus on the time-independent DPG method and
employ a time-stepping strategy to solve the problem over time. Additionally, we introduce a graph
norm for each problem, in which the optimal test space is established, and assess the efficiency of
the proposed methods through various numerical examples. In the case of American option pricing,
we extend the DPG method to tackle both associated the free boundary value problem and the
linear complementarity problem, enabling us to obtain the early exercise boundary.
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To mitigate the computational expense associated with evaluating the optimal test space using
the test-to-trial operator introduced in the original mathematical theory of the method Chan
(2013), Roberts (2013), we leverage a broken test space that localizes the evaluation of the optimal
test space on each element, thereby ensuring element-wise conformity. Employing the method with
a discontinuous optimal test space allows for parallelization of the computation assembly and
local computation of the test space, rendering the method reliable and viable. This feature of the
DPG method facilitates the development of high-performance implementations and harnesses the
capabilities of highly parallel computers.

It is important to note that our intention is not to compete with previous numerical schemes
employed in the literature, despite the many desirable aspects of the DPG method. Instead, by en-
couraging a broader adoption of this method among researchers, we believe its unique features will
prove invaluable in tackling more complex and challenging problems in quantitative finance, includ-
ing option pricing in higher dimensions beyond one-dimensional scenarios, and valuing securites in
more complex models.

The remainder of this paper is organized as follows. Section 2 provides a concise introduction
to the Discontinuous Petrov-Galerkin method with optimal test space, while Section 3 establishes
the notation and elementary tools from functional analysis. In Section 4, we present the DPG
method for Vanilla options and introduce the graph norm for both primal and ultraweak formu-
lations. Convergence analysis for European option pricing is performed in this section. Section 5
focuses on the pricing of exotic options, including American options, Asian options, and double
Barrier options, by introducing the corresponding graph norms. We provide numerical solutions for
standard examples found in the literature. Finally, in Section 6, we present the DPG method for
sensitivity analysis of option pricing problems and evaluate the performance of the DPG method
in computing Greeks for both exotic and vanilla options.

2. The DPG Method

In this section, we provide a high-level introduction to the Discontinuous Petrov-Galerkin (DPG)
method with Optimal Test Functions. We begin with a brief review of the method for the steady-
state problem, and in Section 4, we present a more concrete definition of the spaces to address the
option pricing problem.

We start with the standard well–posed abstract variational formulation, which may not neces-
sarily have a symmetric functional setting. The goal is to find u ∈ U such that

b(u, v) = l(v), v ∈ V, (1)

where the trial space U and test space V are appropriate Hilbert spaces. The functional l(·) is a
continuous linear functional, and b(·, ·) is a bilinear (sesquilinear) form that satisfies the inf-sup
condition:

sup
v∈V

|b(u, v)|
|v|V

≥ γ|u|U , ∀u ∈ U, (2)

ensuring the well–posedness of the variational form (1). The discretized version of this variational
form with the Petrov-Galerkin method seeks to find uh ∈ Uh ⊂ U such that

b(uh, vh) = l(vh), vh ∈ Vh. (3)

According to Babuška’s theorem Babuška (1971), for a discretized system (3) where dim(Uh) =
dim(Vh), stability, or in other words well–posedness, is achieved if the discrete inf-sup condition is

3



April 16, 2024 Quantitative Finance main

satisfied:

sup
vh∈Vh

|b(uh, vh)|
|vh|V

≥ γh|uh|U , ∀uh ∈ U, (4)

where the inf-sup constant γh must be bounded away from zero, i.e., γh ≥ γ > 0. Selecting the
discrete spaces for the trial and test spaces is crucial. The trial space Uh is usually chosen based
on approximability, while the test space Vh can be designed to possess specific properties of the
numerical algorithm, such as ensuring well-posedness.

The DPG method with Optimal Test Functions is designed to find, for each discrete function uh
from the trial space Uh, a corresponding optimal test function vh ∈ V that acts as a supremizer of
the inf-sup condition. In other words, the optimal test function vh ∈ V satisfies

sup
v∈V

|b(u, v)|
|v|V

=
|b(u, vh)|
|vh|V

. (5)

To achieve this, we introduce a trial-to-test operator T : U −→ V . The optimal test space is
defined as the image of the trial space under this operator, i.e., V opt

h := T (Uh). The function

vopt ∈ V opt
h satisfies

(vopt, v)V = (Tui, v)V = b(ui, v), ∀v ∈ V, (6)

where (·, ·)V is the inner product on the test space. The equation (6) uniquely determines the
optimal test space using the Riesz representation theorem, and the discrete stability of the form
(3) is automatically guaranteed. The test function defined in (6) is designed such that satisfying the
supremizer of the continuous inf-sup condition implies satisfaction of the discrete inf-sup condition,
ensuring discrete stability. Moreover, we have

sup
vh∈V opt

h

|b(uh, vh)|
|vh|V

≥ |b(uh, Tuh)|
|Tuh|V

= sup
v∈V

|b(uh, v)|
|v|V

≥ γ|uh|U , (7)

which implies that the inf-sup constant γh ≥ γ.

Theorem 2.1 The trial-to-test operator T : U −→ V is defined as follows:

Tu = R−1
V Bu, u ∈ U, (8)

where RV : V −→ V ′ is the Riesz operator corresponding to the test inner product. The linearity
of T can be easily shown.

Proof. see Demkowicz (2020).

It has been shown in Demkowicz (2020) that the Ideal Petrov-Galerkin method, which was
introduced above, is equivalent to a mixed method and a minimum residual method, where the
residual is defined in a dual norm. The Ideal PG method provides a built-in error indicator for mesh
adaptivity through the corresponding mixed method, where Riesz’s representation of the residual
in the dual test norm is exploited. Consider ε as the solution of the following variational form for
a given uh ∈ Uh:

(ε, v)V = l(v)− b(uh, v), ∀v ∈ V. (9)
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The Riesz representation of the residual ε is uniquely determined by (9). The following mixed
problem can be defined:


uh ∈ Uh, ε ∈ V,

(ε, v)V + b(uh, v) = l(v), v ∈ V,

b(δuh, ε) = 0, δuh ∈ Uh,

(10)

where the solution of the Ideal Petrov-Galerkin problem with optimal test space can be obtained
by solving the mixed Galerkin problem (10). Thus, the method inherently provides a built-in a
posteriori error indicator ε, measured in the test norm.

However, determining the optimal test functions analytically, except for some simple model
problems, is impossible. Therefore, approximating the optimal test space to satisfy the discrete
inf-sup condition is necessary. An enriched test subspace Vh ⊂ V is employed to address this
approximation. Thus, the Practical Petrov-Galerkin method with approximated optimal test space
can be obtained as follows:


urh ∈ Uh,

b(urh, T
rδuh) = l(T rδuh), δuh ∈ Uh,

(11)

where the approximated optimal test space is computed with components that satisfy the standard
discretization


T ru ∈ V r,

(T ru, δuh)V = b(u, δv), δv ∈ V r.

(12)

By increasing the dimension of the discrete enriched test space, we ensure the satisfaction of
the discrete inf-sup condition for the system (3). This strategy is valid based on Brezzi’s theory
Demkowicz (2020), which allows the dimension of the discrete test space V r to exceed the dimension
of the trial space, contrary to Babuška’s theory, which requires overlapping dimensions for the trial
and test spaces. The stability reduction in the practical Petrov-Galerkin method can be analyzed
using Fortin operators Gopalakrishnan and Qiu (2014), Nagaraj et al. (2017).

Despite the numerous advantages of the practical Petrov-Galerkin method, the computational
cost of determining the optimal test space globally through the operator T is high. By employing
a broken test space, this issue can be addressed by localizing the evaluation of the optimal test
space on an element-wise basis. This approach justifies the name ”Discontinuous” Petrov-Galerkin
method (DPG) with optimal test functions. However, the introduction of a broken test space
requires the incorporation of additional trace variables and flux variables on the mesh skeleton
at the element interfaces. We will discuss this aspect thoroughly in Section 4 when proposing the
DPG method in the Ultraweak and primal formulations for the option pricing problem.
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3. Functional Spaces and Preliminaries

We define the following energy spaces to handle the option pricing problem:

L2(Ω) = {f : Ω→ R |
∫

Ω
|f |2dx ≤ ∞},

H1(Ω) = {f : Ω→ R | f ∈ L2(Ω), f ′ ∈ L2(Ω)},
(13)

where the L2-norm is defined as

‖f‖ := (f, f)
1

2 =

(∫
Ω
|f |2dx

) 1

2

. (14)

The domain of the problem, denoted by Ω, is partitioned into a set of computational domains Ωh

consisting of open, disjoint elements γh ∈ Ωh. With the finite element mesh Ωh, we can define the
corresponding broken energy spaces as

L2(Ωh) = {f ∈ L2(Ω) | f ∈ L2(γh), ∀γh ∈ Ωh},

H1(Ωh) = {f ∈ L2(Ω) | f ∈ H1(γh), ∀γh ∈ Ωh}.
(15)

When using the broken test space, we also need to define the energy space for the trace variable.
We define these spaces on the mesh skeleton Γh as follows:

H
1

2 (Γh) = {f̂ ∈
∏

γh∈Ωh

L2(∂γh) | ∃y ∈ H1(Ω) s.t. φ(y
∣∣
γh

) = f̂}, (16)

where the operator φ(·) is the continuous trace operator, which can be defined element-wise as

φ : H1(Ωh)→
∏

γh∈Ωh

L2(∂γh). (17)

Moreover, we need to define an appropriate space for the variational inequality defined in the
problem of American option pricing. Thus, we define a half space H as follows:

H := {f ∈ L2(R+)| f ≥ f̄}, (18)

where f̄ ∈ L2(R+) is the obstacle function. More details about this space can be found in Achdou
and Pironneau (2005), Trémolières et al. (2011). It is worth noting that for option pricing in one
dimension, we consider a uniform discretization of the time interval [0, T ] and a truncated domain of
space [xmin, xmax] as the finite element mesh Ωh, where the computational domain for all problems
is [−6, 6], except for the Asian option, which is [−2, 2].

4. Pricing Vanilla Options

In this section, we apply the DPG method introduced in section 2 to numerically solve the option
pricing problem, specifically focusing on pricing vanilla European options based on the Black-
Scholes model.
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4.1. Vanilla European Options Based on the Black-Scholes Model

In this part, we utilize the DPG method to solve the popular Black-Scholes Model, which provides
a closed-form solution for all European-type derivatives, also known as vanilla options. Although
the assumptions of this model are not universally valid, there is still a large group of market
participants who utilize the Black-Scholes model with a premium, Higham (2004). Moreover, this
model can serve as a benchmark to assess the efficiency of the DPG method.

Let’s briefly recall the Black-Scholes model. The model assumes that the price of a risky asset,
denoted as St, evolves according to the stochastic differential equation:

dSt = rStdt+ σStdWt, (19)

where Wt is the Wiener process defined on an appropriate probability space (Ω,A,P,Ft), r is the
risk-free interest rate, and σ is the volatility of the return on the underlying security. This stochastic
differential equation is commonly referred to as geometric Brownian motion.

Consider a European-style call option on an underlying asset St, where the spot price St satisfies
the geometric Brownian motion equation (19), and the payoff at the expiration date T for a striking
price K is given by max{ST −K, 0} = (ST −K)+. We are interested in determining the fair price
of this option at the current time t, denoted as U(S0, 0), where U(St, t) represents the value of the
option when the underlying price is St. The Black-Scholes formula expresses the option value as:

U(St, t) = EQ
(
e−

∫ T
t
rsds(ST −K)+|Ft

)
, (20)

where Q is the risk-neutral probability measure.
It can be shown Achdou and Pironneau (2005), Higham (2004) that the option price U(St, t)

satisfies the following deterministic partial differential equation:

∂U

∂t
+
σ2

2
S2
t

∂2U

∂S2
+ rS

∂U

∂S
− rU(S, t) = 0, (21)

with the following boundary conditions:

U(0, t) = 0, ∀t ∈ [0, T ],

lim
St→∞

U(St, t) = St − e−r(T−t), ∀t ∈ [0, T ].

(22)

By exploiting the upper tail of the standard normal distribution:

N(x) =
1√
2π

∫ x

−∞
e−

z2

2 dz, (23)

and defining

d1 =
log
(
S0

K

)
+ (r + σ2

2 )T

σ
√
T

, d2 = d1 − σ
√
T , (24)

the analytical solution of Eq. (21) for a European call option is given by:

U(St, t) = StN(d1)−Ke−r(T−t)N(d2). (25)
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We use the closed-form analytical solution (25) for the European call option as a benchmark to

study the accuracy and efficiency of the DPG method. By switching to log-prices x = log
(
St
S0

)
and

introducing the variable τ = T − t, the partial differential Eq. (21) and boundary conditions (22)
can be transformed into the following initial value constant coefficient partial differential equation:



∂U

∂τ
− σ2

2

∂2U

∂x2
− (r +

σ2

2
)
∂U

∂x
+ rU(x, τ) = 0,

U(x, 0) = max{ex −K, 0},

U(0, τ) = 0,

(26)

Note that Eq. (26) can be used to price derivatives whose payoff depends on the price of the
underlying asset at the maturity date. More complicated options with path-dependent prices, such
as American options and Asian options, require different approaches, which we will discuss in the
upcoming sections.

For the time discretization of problem (26), we employ the finite difference θ-method, which takes
the following form:

un+1 − un

∆τ
− (θLBSun+1 + (1− θ)LBSun) = 0, (27)

for n = 0, 1, 2, . . . , Nτ − 1, with the time step ∆τ = T/Nτ and the implicitness factor θ ∈ [0, 1].
The operator LBS is defined as follows:

LBSu =
σ2

2

∂2u(x, τ)

∂x2
− (r +

σ2

2
)
∂u(x, τ)

∂x
+ ru(x, τ),

Thus, different values of θ lead to different well–known timei–stepping schemes, such as the
Backward Euler method (θ = 1.0), Crank-Nicolson method (θ = 0.5), and Forward Euler method
(θ = 0.0). The numerical efficiency of the finite difference method is well–established in the litera-
ture Bulirsch et al. (2002).

Next, we proceed to introduce the DPG methodology for the spatial discretization of the problem.
Various variational formulations can be developed for the semi-discrete model problem (27) with
different properties. In this study, we focus on two formulations: the classical (primal) formulation
and the ultraweak formulation.

4.2. Primal formulation for Vanilla options

In this subsection, we propose the standard classical variational formulation for the DPG method,
known as the DPG primal formulation. By testing the semi-discrete problem (27) with an appro-
priate test function v, integrating over the domain, and applying Green’s identity, we obtain the
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following equation:

(un+1, v)Ωh − (un, v)Ωh

+ ∆τθ
[
−
(
σ2

2

∂

∂x
un+1,

∂

∂x
v

)
Ωh

+

(
(r +

σ2

2
)
∂

∂x
un+1, v

)
Ωh

− (run+1, v)Ωh + 〈 ∂
∂x
un+1, v〉∂Ωh

]
+ ∆τ(1− θ)

[
−
(
σ2

2

∂

∂x
un, v

)
Ωh

+

(
(r +

σ2

2
)
∂

∂x
un, v

)
Ωh

− (run, v)Ωh + 〈 ∂
∂x
un+1, v〉∂Ωh

]
= 0,

(28)

where (·, ·) represents the standard inner product in the Hilbert space L2, and 〈·, ·〉 denotes the du-
ality pair in L2(Γ). In the DPG methodology, the trial space is tested with a broader discontinuous
(broken) space, and thus we do not assume that the test functions vanish on the Dirichlet boundary
conditions. However, the term ∂un

∂x is recognized as the flux variable q̂n, which is a new unknown on

the mesh skeleton. Therefore, by defining a new group variable u = (u, q̂) ∈ H1(Ω)×H−1/2(∂Ω),
the broken primal formulation for the Black-Scholes Eq. (26) can be expressed as:


bprimal(u, v) = l(v),

u(ex, 0) = max{x−K, 0},

u(0, τ) = 0,

(29)

where the bilinear form bprimal(·, ·) and the linear functional l(·) are defined as follows:

bprimal(u, v) = (un+1, v)Ωh + ∆τθ
[
−
(
σ2

2

∂

∂x
un+1,

∂

∂x
v

)
Ωh

+

(
(r +

σ2

2
)
∂

∂x
un+1, v

)
Ωh

− (un+1, v)Ωh + 〈q̂n+1, v〉∂Ωh

]
, n = 1, · · · , Nt,

l(v) = (un, v)Ωh + ∆τ(1− θ)
[(σ2

2

∂

∂x
un,

∂

∂x
v

)
Ωh

+

(
(r +

σ2

2
)
∂

∂x
un, v

)
Ωh

− (un, v)Ωh − 〈q̂n, v〉∂Ωh

]
, n = 1, · · · , Nt,

(30)

with the boundary conditions u0 = max{ex − K, 0} for all x ∈ Ωh, and ui(x = 0) = 0 for
i = 1, · · · , Nt. Here, element-wise operations are denoted by the subscript h. Having the new flux
unknown on the mesh skeleton in the primal formulation (30) is the price we pay for using a larger
test space (enriched test space).

4.3. Ultraweak Formulation for Vanilla Options

In this section, we will derive the ultraweak DPG formulation for the pricing problem. The first
step in obtaining the ultraweak formulation is to transform the Black-Scholes problem (26) into
a first-order system of differential equations by introducing a new variable ϑ(x, t) = ∂U

∂x (x, t) for
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(x, t) ∈ Ω× [0, T ]. The transformed system is given by:



∂U

∂τ
− σ2

2

∂ϑ

∂x
− (r +

σ2

2
)ϑ+ rU(x, t) = 0,

ϑ− ∂U

∂x
= 0,

U(x, 0) = max{ex −K, 0},

U(0, τ) = 0.

(31)

Next, by defining a new group variable u = (u, ϑ) and testing Eq. (31) with the test variables
v = (v, ω), we can integrate and use Green’s identity to obtain the following ultraweak formulation:

(un+1, v)Ωh + (un, v)Ωh+

∆τθ

[
(ϑn+1, σ

2

2
∂
∂xv)Ωh + (ϑn+1, (r + σ2

2 )v)Ωh − (un+1, v)Ωh + (un+1, ∂∂xω)Ωh − (ϑn+1, ω)Ωh+

〈 ∂∂xu
n+1, v〉∂Ωh + 〈 ∂∂xϑ

n+1, v〉∂Ωh

]
+ ∆τ(1− θ)

[
(ϑn, σ

2

2
∂
∂xv)Ωh + (ϑn, (r + σ2

2 )v)Ωh−

(un, v)Ωh − (un, ∂∂xω)Ωh − (ϑn, ω)Ωh + 〈 ∂∂xu
n, v〉∂Ωh + 〈 ∂∂xϑ

n, v〉∂Ωh

]
= 0,

(32)

It is important to note that in the ultraweak formulation, a discontinuous test space is utilized,
which conforms to the DPG methodology. Additionally, the weak formulation does not include
derivatives of the trial variable, and these trial variables are defined in L2(Ω). Consequently, the
boundary values of the field variables are irrelevant on the skeleton Γ. To address this, we introduce
two trace variables, ûn+1 ∈ H1/2(Ω) and ϑ̂n+1 ∈ H1/2(Ω), which are unknown on the skeleton.

By defining the group variables u = (u, ϑ), û = (û, ϑ̂), and v = (v, ω), the broken ultraweak

formulation for the Black-Scholes model is finding u = (u, ϑ) ∈ L2(Ω) × L2(Ω) and û = (û, ϑ̂) ∈
H1/2(Ω)×H1/2(Ω) such that:


bultraweak((u, û),v) = l(v)

(u, û)|(x,0) = max{ex −K, 0},

(u, û)|(0,τ) = 0,

(33)

where

10



April 16, 2024 Quantitative Finance main

bultraweak((u, û),v) = bultraweak(((u, ϑ), (û, ϑ̂)), (v, ω))

= (un+1, v)Ωh + ∆τθ

[
(ϑn+1,

σ2

2

∂

∂x
v)Ωh + (ϑn+1, (r +

σ2

2
)v)Ωh − (un+1, v)Ωh−

(un+1,
∂

∂x
ω)Ωh − (ϑn+1, ω)Ωh + 〈ûn+1, v〉∂Ωh + 〈ϑ̂n+1, v〉∂Ωh

]
, n = 1, · · · , Nt.

l(v) = l(v, ω) = (un, v)Ωh + ∆τ(1− θ)
[
(ϑn,

σ2

2

∂

∂x
v)Ωh + (ϑn, (r +

σ2

2
)v)Ωh − (un, v)Ωh+

− (un,
∂

∂x
ω)Ωh − (ϑn, ω)Ωh + 〈ûn, v〉∂Ωh + 〈ϑ̂n, v〉∂Ωh

]
, n = 1, · · · , Nt,

(34)

4.4. Solvibility of the Primal and Ultraweak Variational formulations

Here, we use a discontinuous test space that is conforming on an element-wise basis, as per the DPG
methodology. Additionally, in the derived variational formulations, the choice of the test space’s
inner product significantly impacts the DPG method, as it determines the norm and structure of
the test space where the DPG method becomes optimal. For example, if the errors in L2-norm are
of interest, the graph norm is a suitable choice for the test space in the ultraweak formulation,
and the standard energy norm induced by the bilinear form ‖ · ‖E = bprimal(v, v) is suitable for
the primal formulation. In this paper, we propose the following graph norm for primal formulation
(29), and the ultraweak formulation (33)

Primal : ‖v‖2V =
1

∆t
‖v‖2 +

1

(∆t)2
‖σ

2

2

∂

∂x
v‖2,

Ultraweak : ‖v‖2V = ‖(v, ω)‖2V =
1

(∆t)2
‖σ

2

2

∂

∂x
v − rv − ω‖2 +

1

∆t
‖(r +

σ2

2
)v − ∂

∂x
ω‖2,

(35)

Having defined the graph norm and energy norm in (35), and the inner product of the corresponding
test space as a result of this choice, we are now prepared to discretize the weak forms and construct
the DPG system. In classical Galerkin methods, the convention is to choose the same discrete space
for both the trial and test spaces, resulting in a square linear system. However, in the DPG method,
the discrete trial space Uh ⊂ U and test space Vh ⊂ V have different dimensions. In practical DPG
methods with optimal test spaces, the test space is enriched, such that dimVh ≥ dimUh. We
assume that {uj}Nj=1 and {vj}Mj=1 are the bases of the trial and test spaces, respectively, where
M ≥ N . In the DPG methodology, each trial space basis function ui and its corresponding optimal
test function vopt

i satisfy the following system:

(vopt
i , δv)V = b(ui, δv), ∀δv ∈ V. (36)

11
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Now, let’s define the M ×M Gram matrix G = (Gij)M×M as

Gij = (vi, vj)V ,

and the N ×M stiffness matrix B = (Bij)N×M as

Bij = b(ui, vj),

For the primal formulation, finding the matrix B is straightforward from the bilinear form and test
norm. However, calculating this matrix for the ultraweak formulation can be more involved. The
stiffness matrix B has the following structure:

B =

[
Buv Bϑv Bûv Bϑ̂v
Buω Bϑω Bûω Bϑ̂ω

]
N×M

, (37)

and l represents the mass matrix l(v) = (f, r). We use high-order Lagrange basis functions of
different orders to expand the trial space with order P , and we enrich the test space with order
p+ ∆p for ∆p = 2. Thus, the global assembly takes the following form:

Bn-opuh = BTG−1Buh = BTG−1l = ln-op, (38)

Here, the discrete operators Bn-op and ln-op represent the near-optimal mass and stiffness matrices
for the DPG formulation. It is worth noting that, thanks to the broken structure of the test space,
the evaluation of optimal test functions in the Gram matrix and its inversion can be localized,
allowing for efficient parallelization of the global assembly. This characteristic makes the DPG
method practical for solving the option pricing problem.

Figure 1. European put Figure 2. European call

Figure 3. The surface for of two European options using DPG method with σ = 0.4, r = 0.1, and
k = 100.

4.5. Numerical Results

In this section, we provide numerical experiments to showcase the efficiency and accuracy of the
DPG method in pricing vanilla options using both the primal and ultraweak DPG methods. For
this experiment, risk-free rate r is set to be 0.05, time to maturity T is one year, and the strike price
K is 100. The computational domain is [−6, 6], and a variety of values for the market volatility σ

12
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is considered in this part. Through this paper, we report the relative errors of L2-error, L∞-error
of the solution obtained by the proposed numerical scheme. The binomial method implemented in
Higham (2002) is utilized as a benchmark and analytical solution to compare with the approximated
solution obtained with the DPG method. The relative errors are defined as follows

‖E‖2L2
= ‖u− ũ

u
‖2L2

, ‖E‖∞ = ‖u− ũ
u
‖L∞ , (39)

where ũ represents the estimated value attained from the numerical method. Fig. 3 depicts the
surface of a call and a put option with volatility σ = 0.4 for both primal and ultraweak DPG
formulation. In this part of the experiment, we study the asymptotic convergence of relative errors
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(d) Volatility σ = 0.015

Figure 4. Accuracy properties of primal DPG for European put options r = 0.05, K = 100, and
different volatility

of the numerical method for uniform mesh refinement both in time and steps. It is worth mentioning
that error is small in general, and the relative error is of order of 10−6.

In this regard, Fig. (4a), and (4b) displays the space order of convergence of the primal DPG
method for volatilises of σ = 0.3 and σ = 0.015 pricing a European put option. It is evident that
the convergence rate of primal DPG scheme is super linear in space.

The same investigation for ultraweak DPG scheme Fig. (5a), and (5a) shows that although
the convergence rate in space is super-linear the errors in this scheme decay moderately gently.
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We observe that for the space order in both ultraweak and primal schemes initially we see some
inconsistency in the linear decreasing of the error but once a number of elements approach a
certain point, we witness the expected linear convergence O(h), which can cause this overall super-
linear convergence rate. However, Fig. (4c), and (4d), and Fig. (5c), and Fig. (5d) depicts this
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Figure 5. Accuracy properties of ultraweak DPG for European put options r=0.05, K=100, and
different volatility

observation more precisely when for the same scenario the rate of convergence for the Primal DPG
and Ultraweak DPG method is linear in time due to the fact that the h = 0.01 is fixed for this
experiment.

5. Exotic Options

Financial institutions issue other forms of options that are not vanilla call or put introduced in
section 4. This modern financial instrument is traded between companies and banks to cope with a
variety of demands Zhu et al. (2004). So, exotic options are traded in the over-the-counter (OTC)
market to satisfy special needs. Being a complicated financial instrument is the common property
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of exotic options where the value of of these options depends on the whole or part of the path of the
underlying security. Thus, exotic options are path-dependent options. In this section, we proposed
the DPG method for the numerical solution of the important examples of path-dependent exotic
options including American options, Asian options, Barrier options, and look-back options.

5.1. American options

In this section, we briefly review American option pricing under the simple model of Black-Scholes.
Contrary to the European option, the holder of this contract has the right to exercise the option at
any time before maturity. It is well known that this slight difference brings the analysis of American
options much more complicated. Indeed, this right turn problem of valuing the American option
into a stochastic optimization problem. The price of an American option under the risk-neutral
pricing principle can be obtained as

U(x, t) = sup
t≤τ≤T

E[e−
∫ τ
t
r(s)dsh(x)|Ft], (40)

where h(x) is the option payoff, and τ is a stopping time. Stopping time is the time that owner of the
option exercises the contract, besides, the stopping time is a concept in the stochastic analysis as
well Chung (2013). It is worth noting that due to the complexity of the American option problem,
this problem does not have a closed-form solution. One way of formulating American options
thanks to the no-arbitrage principle is the free boundary value problem. Indeed, the free boundary
happens when the option is deep in-the-money, and finding this boundary alongside pricing the
American option brings extra difficulties to the problem. Here we briefly recall the different forms
of American options and the corresponding DPG formulation for the formulations, for more detail
one can see Seydel and Seydel (2006).

Considering the log-prices x = log(StS0
), changing tenor T − t to τ , the free boundary formulation

of the American put option yields:



∂U

∂τ
(x, τ)− σ2

2

∂U2

∂x2
(x, τ)− (r +

σ2

2
)
∂U

∂x
(x, τ) + rU(x, τ) = 0, ∀x > Sf ,

U(x, τ) = K − ex, ∀x ≤ Sf ,

U(x, 0) = (K − ex)+,

lim
x→∞

U(x, τ) = 0,

lim
x→Sf

U(x, τ) = K − eSf ,

lim
x→Sf

∂U(x, τ)

∂x
= −1,

(41)

in which, Sf is the free boundary of the American option pricing. It is evident that solving the
problem of American option in a free boundary framework needs evaluating the free boundary
along the finding the solution. Whereas, There is another approach to deriving the American option
pricing problem called a linear complementarity problem (LCP). The advantage of this approach is
that free boundary is not present in the formulation anymore. However, solving the LCP problem
has its own complexity, and techniques Murty and Yu (1988) . The linear complementarity problem
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(LCP) of the American option can be written as

(
∂U

∂τ
(x, τ)− σ2

2

∂U2

∂x2
(x, τ)− (r +

σ2

2
)
∂U

∂x
(x, τ) + rU(x, τ)

)
(U(x, τ)− h(x)) = 0,

∂U

∂τ
(x, τ)− σ2

2

∂U2

∂x2
(x, τ)− (r +

σ2

2
)
∂U

∂x
(x, τ) + rU(x, τ) ≥ 0,

U(x, τ)− h(x) ≥ 0,

U(x, 0) = (K − ex)+.

(42)

The main approach here is to utilize the DPG formulation for the governing equations of the
Eq. (42), and (41) and then consider the free boundary condition for them. The using DPG method
for a (LCP) is examined before in Führer et al. (2018) for using DPG formulation for the Signorini
type problem as a contact problem. However, Thomas Fuhrer et al. in Führer et al. (2018) proposed
the ultraweak formulation of the corresponding problem, here we derive both ultraweak and primal
formulation of the DPG method for the problem of American option pricing as a special case of
obstacle problem.

Now, for the DPG formulation in LCP framework, we multiply the second inequality condition in
the Eq. (42) with the smooth no-negative test functions v ∈ V where test space is a broken convex
cone and following the same process of defining trail and flux variable presented in the section 4,
and after some integration by part we obtain

d

dτ
(u,v) + bτ (u,v) ≥ 0, (43)

where bilinear form for primal formulation defines as

bτprimal(u, v) = (−σ
2

2

∂u

∂x
,
∂v

∂x
)Ω+

+
(
(r +

σ2

2
)
∂u

∂x
, v
)

Ω+
− (u, v)Ω+

+ 〈q̂, v〉∂Ω+
, (44)

where Ω+ shows the non–negative part of the domain, with a set of trial and flux variables u =

(u, q̂) ∈ H1(Ω) × H
1

2 (∂Ω) , and test variable v = v ∈ H1(Ω). Moreover, defining trail variables

u = (u, ϑ) ∈ L2(Ω)× L2(Ω), and flux variables û = (û, ϑ̂) ∈ H1/2(∂Ω)×H1/2(∂Ω), one can define
the bilinear form in (43) for the ultraweak formulation as following

bτultraweak((u, û),v) = bτultraweak

((
(u, ϑ), (û, ϑ̂)

)
, (v, ω)

)
,

= (ϑ,
σ2

2

∂v

∂x
)Ω+

+ (ϑ, (r +
σ2

2
)v)Ω+

− (u, v)Ω+
− (u,

∂ω

∂x
)Ω+

− (ϑ, ω)Ω+
+ 〈û, v〉∂Ω+

+ 〈ϑ̂, v〉∂Ω+
.

(45)

It is well-known that the two variational inequalities proposed, derived from the bilinear forms
obtained through equation (43) via (44) and (45), are the parabolic variational inequalities of the
first kind that admit a unique solution Kinderlehrer and Stampacchia (2000). Having well–posed
variational inequality of (43), we can approximate the problem in a finite-dimensional space. Thus,
similar to estimating the price of vanilla options, we consider the time partition τ1 = 0 ≤ · · · ≤
τNτ = T of the time interval [0, T ], and discrete trial space Uh ⊂ U , and enriched test space
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Vh ⊂ V (dim Vh ≥ dim Uh) and the corresponding basis spanned {uj}Nj=1, and {vj}Mj=1 for the
aforementioned spaces. We use the backward finite difference Euler method to approximate the
time derivative, and as a result, the discrete DPG for variational inequalities arising from the
American option pricing problem yields

(un+1 − un,v) + ∆τbτn(un,v) ≥ 0, ∀v ∈ Vh. (46)

However, writing the θ-method for the second term in left hand side of the discrete variational
inequality (46) will be performed very similarly to what is proposed for vanilla options. Let B and
G be the stiffness and Gram matrices defined by

Bij = bτn(ui,vj), Gij = (vi,vj)V , li = (ui,vj)V , (47)

where (·, ·)v inner product of test space obtained from the energy norm for primal DPG and graph
norm for ultraweak form introduced in (35). So, the discrete variational inequality (46) is equivalent
to 

BTG−1l(un+1 − un) + ∆τBTG−1Bun ≥ 0,

un ≥ h(x),

(un − h(x))
(
BTG−1l(un+1 − un) + ∆τBTG−1Bun

)
= 0,

(48)

for n = 1, · · · , Nτ . Setting near the optimal discrete operators of Bn-op = BTG−1B, ln-op = BTG−1l
discrete LCP (48) will attain the following form

ln-op(un+1 − un) + ∆τBn-opun ≥ 0,

un − h(x) ≥ 0, ∀n = 1, · · · , Nτ

(un − h(x))
(
ln-op(un+1 − un) + ∆τBn-opun

)
= 0.

(49)

There are different approaches to solve the discrete variational inequality (49) including fix-point
approach, penalization method, iterative method to just name few Damircheli and Bhatia (2019).
The DPG method, being a minimum residual method, always produces a symmetric positive def-
inite stiffness matrix. This ensures the convergence of solutions obtained through iterative algo-
rithms, such as the semismooth Newton’s method employed in this study.

To close the section we will present the DPG formulation for solving the free boundary value
problem (41). Similar to the procedure for governing equation of vanilla options, one can test the
governing equation (41) with the appropriate test functions, and define the following system

d

dτ
(u,v) + bτ (u,v) = 0, ∀x > Sf , (50)

Where the bilinear form in the Eq. (50) has the form of (44) for the primal formulation and (45)
for the ultraweak formulation. Like our approach so far, we use the Backward Euler method for
time derivative and trial and test space defined for the LCP form to find the following discreet
system of equation

(un+1 − un,v) + ∆τbτn(un,v) = 0, ∀xh > Sf , ∀v ∈ Vh. (51)

Having enough fine time discretization in the above form, using the information with one time step
lag can attain a good approximation of the solution of the American option. In another word, one
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need to notice that the final price of the American option will find from the following implicitly
boundary condition

un =


max{h(x), un−1}, ∀x ∈ Ωo,

h(x), x = inf ∂Ω,
0, x = sup ∂Ω.

(52)

in which h(x) is the payoff of American option. Boundary conditions presented in (52) are necessary
boundary conditions of the problem of valuing American option pricing.
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Figure 6. Value of American put option for r=0.05, K=100, and different volatilises.

5.2. Numerical Experiments

In this set of numerical experiments, we study the problem of valuing the American option with
the ultraweak and primal DPG method. We intend to verify that DPG is a reliable and efficient
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method for solving this free boundary value problem. Fig. (6a), and Fig. (6b) illustrate the price
of an American put option for a fixed interest rate r = 0.05, maturity K = 100, and different
volatilises. It is a well–known fact that the price of an American option is greater than a European
option due to the right of the owner of the American option for exercising the financial contract
anytime before maturity, this can vividly be seen in Fig. (6c), and Fig. (6d) for the payoff and
value of an American option. Thus, the proposed methods can mimic this behavior accurately for
different volatility of the market for both primal and ultraweak formulations. Error analysis of the

Table 1. Value of American Option r = 0.05, σ = 0.15, K=100

∆τ h value ‖E‖∞
Primal Ultraweak Primal Ultraweak

0.01 0.46 4.24860417 4.24224142 0.01599300 0.00963025
0.01 0.23 4.23640882 4.23311370 0.00379765 0.00050253

0.01 0.11 4.23335691 4.23394300 0.00074574 0.00133183

0.01 0.05 4.23295566 4.23288421 0.00034449 0.00027304
0.01 0.03 4.23255287 4.23254907 5.83E-05 6.21E-05

0.01 0.02 4.23256997 4.23256637 4.12E-05 4.48E-05

0.01 0.01 4.23259347 4.23259367 1.77E-05 1.75E-05

American option conducted with the relative L∞, and L2–error of the solution very similar to the
definitions (39). Besides, the bench mark for the exact solution is opt the value of binomial method
introduced and implemented in Higham (2002). Table (1) is prepared to show the error of the DPG
numerical scheme for both primal and Ultraweak formulation. In this study, the time step is fixed
∆τ = 0.01, and we use a finer mesh in spatial dimension on each step. One can see that the trend
of error is descending as h decreases and we get more accurate value of the American options.
Although the magnitude of error is important, the order by which error is lessened is of a great
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Figure 7. Accuracy properties of ultraweak and primal DPG for American put options in the spatial
dimension with the parameters r = 0.05, K = 100, and σ = 0.15

importance in our error analysis. In this investigation we used the high order DPG method as well
to study the effect of the order of interpolation on the valuing of the American option pricing. Let’s
commence with the spatial order of convergency. Fig. (7a), and Fig. (7b) illustrates the order of
convergence of both primal and ultraweak formulation for valuing American option for the fixed
interest rate r = 0.05, exercise prices of K = 100, and the market volatility of σ = 0.15 in space
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order for first order and second order DPG. The experiment shows that asymptotic convergence
of L2–error is superlinear, but it doesn’t reach the O(h2) for the second order DPG scheme. One
possible explanation of the diminishing the order could be an adverse impact of free boundary in
the pricing problem. However, the error is relatively small, and table (1) reinforce this trend as
well for relative sup-error for both primal and ultraweak formulation, where ultraweak formulation
has a tiny better performance in majority of cases. In order to study the stability and convergence
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Figure 8. Accuracy properties of Ultreawek and primal DPG scheme for American put options with
respect to time step with parameters r=0.05, K=100, and σ = 0.15

in time stepping scheme, we prepared Fig. (8). A fixed mesh in space with Ns = 64 elements
is used and decrease the time step ∆τ and record the L2-error for first and second order DPG
method. The convergence analysis shows that this both primal Fig. (8a) and ultraweak Fig. (8b)
formulation benefit from the rate of convergence of O(∆τ) as we expected and the backward Euler
method is unconditionally stable. However, the rate of convergence for time stepping captures for
initial time steps (almost Nτ = 100), where as after this point spacial discretization dictates it’s
impact afterwards for both DPG forms. Besides accurately pricing the American-type financial
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Figure 9. Optimal Exercise boundary for an American put with the primal DPG method.

derivative, finding the optimal exercise boundary for an American option is essential. The DPG
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method proposed in this section can find the optimal exercise boundary implicitly thanks to the
projection-based method just by checking the price with the payoff at each moment or through
an automatic procedure in the first active points at each time step in the primal-dual active set
strategy. Fig. (9a) depicts finding this free boundary for the different interest rates of the market at
each time to maturity. This optimal boundary is a powerful indicator for practitioners to choose the
appropriate positions due to the hedging strategy. Thus, the optimal exercise boundary partitions
the domain of the problem into an ”Exercise region” and ”Do not Exercise” region (9b) where the
owner of the option will exercise the option when the stock price is at the green region, and will
await in the red region.

5.3. Asian Options

Asian options can be classified as path-depended financial derivatives where the payoff of the option
depends on the time average of the underlying security over some period of time such as the lifetime
of an option Shreve (2004), Kemna and Vorst (1990). This average can be taken over continuous
sampling or discrete sampling and the type of average can be an arithmetic average or geometric
average. The closed-form value of an Asian option is not in hand, so a numerical scheme is an
essential remedy to find the value of an Asian option.

Seeking a closed-form solution such as the Laplace transform of the price for this path-dependent
derivatives has been a popular approach Vorst (1992), and Turnbull and Wakeman (1991). However,
the numerical implementation of the aforementioned methods is troublesome for low volatility cases
Fu et al. (1999). The Monte Carlo method can be used for the numerical solution, where it is well–
known that this method is computationally expensive Kemna and Vorst (1990), and Broadie and
Glasserman (1996). Another popular approach is solving two dimensions in space PDE to find the
value of an Asian option Ingersoll (1987), Vecer (2001), and Kim et al. (2014). Besides, Rogers
and Shi Rogers and Shi (1995) proposed a reduction approach where solving one-dimensional PDE
obtains the value of the desired Asian option. However, both one and two-dimensional PDEs are
susceptible to oscillatory solution and can blow up through time due to existing small diffusion
terms.

In this section, we propose the DPG method for pricing the option based on the Black-Scholes
pricing framework. Assume the dynamic of the underlying asset satisfies in a geometries Brownian
motion defined in (19), then the payoff of an Asian call option at maturity with the fixed-strike is
following

U(T ) = max{ 1

T

∫ T

0
S(t)dt−K, 0} = max

{ 1

T

∫ T

0
S(t)dt, 0

}
, (53)

based on the risk-neutral pricing theory, the price U(t) of this Asian option at time t ∈ [0, T ] yields

U(t) = E[e−r(T−t)U(T )|Ft], ∀t ∈ [0, T ], (54)

where expectation in (54) is a conditional expectation with respect to the filter Ft of the probability
space (Ω, P,Ft). Since the payoff defined in (53) depends on the whole path of stock price S(t),
the price of this option is a function of t, S(t), and the evolution of value underlying security over
the path. Thus, we extend the pricing model presented in previous sections for the European and
American options by defining a second process

Y (t) =

∫ t

0
S(v)dv, (55)
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where the dynamic of this new process Y (t) follows a differential equation as following

dY (t) = S(t)dt. (56)

Therefore, the value of the Asian option is also a function of Y (t), so we denote the price of the
Asian option with U(t, St, Y (t)). This function satisfies ∀t ∈ [0, T ], and ∀(x, y) ∈ R+ × R in the
following two-dimension in space, partial differential equation(see Shreve (2004), Kemna and Vorst
(1990) for details)



∂U(t, S, y)

∂t
+
σ2

2
S2∂

2U(t, S, y)

∂S2
+ rS

∂U(t, S, y)

∂S
+ S

∂U(t, S, y)

∂y
− rU(t, S, y) = 0,

U(t, 0, y) = e−r(T−t)
( y
T
−K

)+
, t ∈ [0, T ), y ∈ R,

U(T, S, y) =
( y
T
−K

)+
, S ≥ 0, y ∈ R,

lim
y→−∞

U(t, S, y) = 0, t ∈ [0, T ), S ≥ 0.

(57)

Now, let’s define a new state variable

x =
1

S(t)
(K − 1

T

∫ t

0
S(s)ds). (58)

Then, it has been shown Rogers and Shi (1995), Ingersoll (1987) that the price of the Asian option
satisfies the following nonlinear backward partial differential equation


∂U

∂t
+
σ2

2
x2∂U

2

∂x2
− (

1

T
+ rx)

∂U

∂x
= 0,

U(T, x) = max{0,−x},

(59)

where the partial differential equation (59) is one dimensional PDE in space. Eq. (59) is a nonlinear
partial differential equation of convection-diffusion type with a convection term that is a function of
volatility and spatial variable x. Thus, this differential equation belongs to the family of convection
dominant problems where the coefficient of the convection term (second-order derivative) can be
a very small number in this model. As we mentioned earlier in this section, this small coefficient
could imply an oscillatory behavior such that it can lead to numerical instability for the numerical
scheme Douglas and Russell (1982). On the other hand, the efficiency and robustness of the DPG
method for the convection-diffusion problem have been successfully shown for the family of the
convection-dominated problems (Ellis et al. (2016), Chan et al. (2014), Chan (2013), Demkowicz
and Heuer (2013) and the references therein).

Having the solution of Eq. (59), the value of an Asian option with strike price K and initial
stock value S0 can be computed as S0U(0,K/S0). After using a truncated computational domain
x ∈ [−2, 2] for the Eq. (59) and change of variable τ = T−t in time, the system of partial differential
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equation (59) will build into the following form,



∂U

∂τ
− σ2

2
x2∂U

2

∂x2
+ (

1

T
+ rx)

∂U

∂x
= 0, ∀x ∈ [−2, 2], ∀τ ∈ [0, T ],

U(0, x) = max{0,−x},

U(τ, 2) = 0,

∂U2

∂x2
(τ,−2) = 0.

(60)

So, the option value will be S0U(T,K/S0). Using our convention for the DPG method, we can write
the weak form for the Eq. (60) as following

d

dτ
(u,v) + bτ (u,v) = 0, (61)

(62)

where the bilinear form for primal formulation defines as

bτprimal(u, v) = (
σ2

2
x2 ∂

∂x
u,

∂

∂x
v)Ω +

(
(

1

T
+ (r + 2)x

) ∂
∂x
u, v)Ω − 〈q̂, v〉∂Ω, (63)

with a set of trial and flux variables u = (u, q̂) ∈ H(Ω) × H
1

2 (∂Ω), test variable v = v ∈ L2(Ω).

Moreover, considering trail variables u = (u, ϑ) ∈ L2(Ω) × L2(Ω), and flux variables û = (û, ϑ̂) ∈
H1/2(∂Ω)×H1/2(∂Ω), the bilinear form (61) for the ultraweak formulation reads

bτultraweak((u, û),v) = bτultraweak(((u, ϑ), (û, ϑ̂)), (v, ω)),

= −(ϑ,
σ2

2
x2 ∂

∂x
v)Ω + (ϑ, (

1

T
+ (r − σ2)xv)Ω − (u,

∂ω

∂x
)Ω − (ϑ, ω)Ω

+ 〈û, ω〉∂Ω + 〈ϑ̂, v〉∂Ω.

(64)

Now, using backward Euler approximation for time derivative and appropriate discrete test and
trial space for DPG explained in the section 5.1, the discrete DPG formulation for the Asian option
pricing problem reads

(un+1 − un,v) + ∆τbτn(un,v) = 0, ∀v ∈ Vh. (65)
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We propose the following graph norm for ultraweak formulation and energy norm for primal DPG
formulation to solve the valuing Asian option problem formulated by Eq. (65)

Primal : ‖v‖2V =
1

∆t
‖v‖2 +

1

(∆t)2
‖σ2 ∂

∂x
v‖2,

Ultraweak : ‖v‖2V = ‖(v, ω)‖2V

=
1

(∆t)2
‖σ2 ∂

∂x
v − (

1

T
+ (r − σ2)v − ω‖2 +

1

∆t
‖ ∂
∂x
ω‖2.

(66)

Therefore, one can obtain the corresponding discrete operators

Bij = bτ (ui,vj), Gij = (vi,vj)v, li = (ui, v). (67)

However, it is worth mentioning that the above rectangle matrix B is a function of the spatial
variable, and the induced inner product (·, ·)v is formed by the associated norms (66) defined in
the procedure of the DPG formulation. Thus, discrete DPG formulation of the Eq. (60) ∀n ∈
{1, · · · , Nτ}, yields 

BTG−1l(un+1 − un) + ∆τBTG−1Bun = 0,

u0 = max{0,−x}, ∀x ∈ [−2, 2]

un|x=2 = 0, ∀n ∈ 1, · · · , Nτ ,

(68)

Thus, we can define near the optimal discrete DPG operators Bn-op = BTG−1B, ln-op = BTG−1l
for the Eq. (60) for all ∀n ∈ {1, · · · , Nτ}, such that

ln-op(un+1 − un) + ∆τBn-opun = 0,

u0 = max{0,−x}, ∀x ∈ [−2, 2],

un|x=2 = 0, ∀n ∈ {1, · · · , Nτ}.

(69)

The system of Eq. (69) can be solved by an iterative method or a linear solver. In the next section,
we examine the efficiency of the proposed DPG method.

5.4. Numerical Experiments

As mentioned before, the set of the partial differential equations (60) is a nonlinear and convection-
dominant problem, and developing a numerical scheme for this problem can be problematic due
to the convection term. In this section, we select some famous test problems from the literature to
showcase the efficiency and accuracy of the proposed numerical scheme (69). In this example, all
the results are generated by the first-order DPG method, and corresponding to the enriched test
spaces (∆p = 2). We used Ns = 100 number of spatial elements, and the Nt = 100 time step for all
the experiments in this section. Fig. (10) displays the value of the Asian option with two ultraweak
and primal DPG formulations for different values of σ = 0.05, 0.1, 0.2, 0.3. As it can be seen the

24



April 16, 2024 Quantitative Finance main

40 60 80 100 120 140 160

0

20

40

60

ST

U
(S
,T

)
σ = 0.05 σ = 0.1
σ = 0.2 σ = 0.3

40 60 80 100 120 140 160

0

20

40

60

ST

U
(S
,T

)

σ = 0.05 σ = 0.1
σ = 0.2 σ = 0.3

(a) Primal DPG

40 60 80 100 120 140 160

0

20

40

60

ST

U
(S
,T

)

σ = 0.05 σ = 0.1
σ = 0.2 σ = 0.3

(b) Ultraweak DPG

Figure 10. Value of an Asian option with DPG method for r = 0.015, and different volatilises

value of the Asian option is smooth and stable even for a small value of σ = 0.05 which leads
to the convection-dominated case for the system of (69). We prepared the Table (2) to compare

Table 2. Asian call option with r = 0.09, T = 1, S0 = 100

σ Reference Method K = 95 K = 100 K = 105

0.05

Zhang Zhang (2001) 8.8088392 4.3082350 0.9583841
Zhang-AA2 Zhang (2003) 8.80884 4.30823 0.95838

Zhang-AA3 Zhang (2003) 8.80884 4.30823 0.95838
Ultraweak DPG 8.8085332 4.3081967 0.958371
Primal DPG 8.8088363 4.3082291 0.9583836

0.10

ZhangZhang (2001) 8.9118509 4.9151167 2.0700634

Zhang-AA2Zhang (2003) 8.91171 4.91514 2.07006
Zhang-AA3Zhang (2003) 8.91184 4.915126 2.07013

Ultraweak DPG 8.910986 4.915116769 2.0700633

Primal DPG 8.9118498 4.9151265 2.0700634

0.20

Zhang Zhang (2001) 9.9956567 6.7773481 4.2965626
Zhang-AA2Zhang (2003) 9.99597 6.77758 2.745

Zhang-AA3Zhang (2003) 9.99569 6.77738 4.29649
Ultraweak DPG 9.99565668 6.7773481 4.2965626

Primal DPG 9.9956567 6.7773429 4.2965619

0.30

ZhangZhang (2001) 11.6558858 8.8287588 6.5177905
Zhang-AA2 Zhang (2003) 11.65747 8.82942 6.51763
Zhang-AA3 Zhang (2003) 11.65618 8.82900 6.51802

Ultraweak DPG 11.6558853 8.8287498 6.51779047
Primal DPG 11.6558857 8.8287580 6.51779054

the result of DPG methodology for pricing an Asian option with interest rate r = 0.09, T = 1,
S0 = 100, different strike price K = 95, 100, 105, and different volatility with the result report in
Zhang (2001), Zhang (2003). Considering the result from Zhang (2001) as a benchmark with the
PDE method, one can see that the obtained results from DPG ultraweak and primal method are so
close (less than 0.001% deviation). To compare the accuracy and stability of the proposed method
with the broader method in the literature, Table (3) is produced. In this test, the results from the
Monte Carlo method are exploited as an exact solution. We compute the value of an Asian option
for different strike prices K = 95, 100, 105, the interest rate of r = 0.15, time to maturity T = 1,
initial asset value S0 = 100, with different volatility σ = 0.05, 0.1, 0.2, 0.3. The result from the DPG
methods is a maximum 0.001% deviation from the benchmark.
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Table 3. Asian call option with r = 0.15, T = 1, S0 = 100

σ Reference Method K = 95 K = 100 K = 105

0.05

vecer Vecer (2001) Monte Carlo 11.094 6.795 2.745

FDM 11.094 6.795 2.745
Rogers and Shi Rogers and Shi (1995) Lower Bound 11.094 6.795 2.745
Foufas and Larson Foufas and Larson (2008) FEM 11.112 6.810 2.754

Kim et al. Kim et al. (2007) MPCM 11.093 6.79 2.78
Ultraweak DPG 11.09398 6.79512 2.74481
Primal DPG 11.09401 6.7948 2.74499

0.10

vecerVecer (2001) Monte Carlo 15.399 7.028 1.418
FDM 15.399 7.029 1.415

Rogers and Shi Rogers and Shi (1995) Lower Bound 15.399 7.028 1.413
Foufas and Larson Foufas and Larson (2008) FEM 15.416 7.042 1.422
Kim et al. Kim et al. (2007) MPCM 15.398 7.028 1.448

Ultraweak DPG 15.3984 7.0277 1.41769
Primal DPG 15.39899 7.02812 1.418001

0.20

vecerVecer (2001) Monte Carlo 15.642 8.409 3.556

FDM 15.643 8.412 3.560
Rogers and ShiRogers and Shi (1995) Lower Bound 15.641 8.408 3.554
Foufas and Larson Foufas and Larson (2008) FEM 15.659 8.427 3.570

Kim et al. Kim et al. (2007) MPCM 15.66437 8.421 3.573
Ultraweak DPG 15.64218 8.4091 3.5559
Primal DPG 15.641865 8.4102 3.5584

0.30

vecerVecer (2001) Monte Carlo 16.516 10.210 5.731

FDM 16.516 10.215 5.736
Rogers and ShiRogers and Shi (1995) Lower Bound 16.512 10.208 5.728

Foufas and LarsonFoufas and Larson (2008) FEM 16.553 10.231 5.750

Kim et al. Kim et al. (2007) MPCM 16.5179 10.2194 5.742
Ultraweak DPG 16.51615 10.21045 5.73074

Primal DPG 16.51617 10.20964 5.730865

5.5. Barrier Options

A double knock-out Barrie option is a financial contract that gives a payoff h(s) at maturity T , as
far as the price of the underlying asset stays in the predetermined barriers [SL(t), SU (t)], otherwise,
if the spot price is hit barriers, the option gets knocked out. Although the barriers are checked
continuously in time, it is more feasible to check the barriers discretely in the real–world application
Shreve (2004).

It is well–known that the closed–form analytical solution for the discrete double barrier option
is not known, so devising accurate and efficient numerical methods for valuing this type of option
is essential. Thus, over the past years, researchers try to develop semi-analytical and numerical
schemes for approximating the price of Barrier options. Here, we briefly address some of them.
Kunitomo et.al Kunitomo and Ikeda (1992) used sequential analysis to find the solution as a series,
analytical approach by contour integration is used by Pelsser Pelsser (2000) to price the barrier
options. The binomial method is used by Cheuk et. al in Cheuk and Vorst (1996), and the Monte
Carlo method as a probability-based method is devised in Ndogmo and Ntwiga (2007) to price
this exotic option. PDE method, such as the finite difference method by Zevan et. al in Zvan et al.
(2000), a finite element in Golbabai et al. (2014) by Golbabai et.al, and quadrature method in
Milev and Tagliani (2010) have been developed for the pricing discrete barrier options.

We begin by stating the model of the problem which is inspired by the work Milev and Tagliani
(2010), and Tse et al. (2001). Assume that dynamic of the underlying asset {St}t∈[0,T ] is following
the stochastic differential equation in (19), with the standard winner process Wt, interest rate r,
volatility of σ, and fixed initial asset price S0. Defining the Brownian motion Zt, with instantaneous
drift value r̂ = r − (σ2/2), and standard deviation σ, the price process will follow St = S0e

Zt .
Moreover, we define the discrete counterpart process X̃n = S0e

Θn , for n = 1, 2, · · · , N , and Θn =
θ1 + θ2 + · · · + θn, Θ0 = 0. Random variables θi are independent normally distributed random
variables i.e. N(r − σ2/2,∆tσ) with ∆t = T

N for N predetermined monitoring instants.
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Consider the discrete monitoring dates of t1 = 0 ≤ t2 ≤ · · · ≤ tN = T with the constant upper
and lower barriers of SU , and SL respectively. Besides, we assume that barriers are not active on
the first, and last dates of our time interval. The price of a discrete double barrier option can be
computed by discount of expected payoff at expiration time T to the present time t as follows.

e−rTE[h(ST )|χB1
χB2
· · ·χBn ],

where the indicator functions of χ· is evaluating on sub set of Bi = {Si ∈ (SL, SU )}.
Denoting U(t, S) the value of a discrete double barrier option with the date of maturity of T ,

strike price K, this value will satisfy in the following system of N partial differential equations



∂U(t, S)

∂t
+
σ2

2
S2∂

2U(t, S)

∂S2
+ rS

∂U(t, S)

∂S
− rU(t, S) = 0, ∀t ∈ [ti, ti + 1], ∀i = 1, 2, · · · , N

U(0, t) = 0,

U(S, T ) = max{S −K, 0}

U(S, ti+1) = hi+1(S), ∀i = 1, 2, · · · , N

lim
S→+∞

U(t, s) = h(S),

(70)
where boundary conditions hi(S), and hT (S) are also defined as

hi(S) =


lim
t→t+i

U(S, t), if SL ≤ S ≤ SU , ∀t ∈ [ti, ti + 1], ∀i = 1, 2, · · · , N

0, if S = R+\[SL, SU ],

(71)

, and

h(S) =

{
S −Ke−r(T−t), if ∀t ∈ [tN−1, tN ],

0, if t ∈ [ti, ti+1], ∀i = 1, 2, · · · , N − 2
(72)

As we can observe, the set of partial differential equations (70) is a system of consecutive partial
differential equations where on each time interval [ti, ti+1] has the final boundary conditions of (71),
and the final PDE has the boundary condition (72). Besides, the system of PDEs presented in (70)
with the aforementioned boundary condition is a nonlinear partial differential equation associated
with the functions (71), (72), therefore, designing an accurate and stable numerical scheme is tricky
here.

We use the change of variable in space and time similar to the change of variables for vanilla
options in section 4.1 to obtain the following piecewise constant coefficient partial differential
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equations.



∂u(τ, x)

∂τ
+
σ2

2

∂2u(τ, x)

∂x2
+ (r +

σ2

2
)
∂u(τ, x)

∂x
− ru(τ, x) = 0, ∀τ ∈ [τi, τi+1], ∀i = 1, 2, · · · , N

u(0, τ) = 0,

u(x, 0) = max{S −K, 0},

u(x, τi) = hi(x), ∀i = 1, 2, · · · , N,

lim
x→+∞

u(τ, x) = h(x).

(73)
Now if we concentrate on one of the equations as a generic differential equation on the interval

[τj , τj+1], where j ∈ {1, 2, · · · , N}, we propose the following weak formulation for DPG formulation

d

dτ
(u,v) + bτ (u,v) = 0, ∀τ ∈ [τj , τj + 1], (74)

where the bilinear form is similar to the primal and ultraweak formulation defined in Eq. (44), and
(45) on this sub–interval. However, the boundary conditions introduced (73) are performing on the
interval [τj , τj+1] as a sub–interval of the computational domain. Utilizing a generic partition τj =
τj1, τj2, · · · , τjNj = τj+1, for each interval, and using backward Euler scheme for time derivative,
the approximate of Eq. (74) in the finite dimension space, the discrete DPG for each sub–partial
differential equations reads

(un+1 − un,v) + ∆τib
τ
n(un,v) = 0, ∀v ∈ Vh., ∀n ∈ {1, 2, · · · , Ni}, (75)

where the time steps on the domain of each sub–problem defined as ∆τ` = τ`+1−τ`
N`

, ` ∈ {1, · · · , N}.
Indeed, on each problem (75) we need to solve a nonlinear discrete system of equations (see the
Algorithm 1). Defining the graph and energy norm defined in (35) for each sub–domain [τj , τj+1],
and denoting the discrete operators of B, G, and l accordingly as following

Bij = bτ (ui,vj), Gij = (vi,vj)V , li = (ui,vj)V , (76)

One can find the discrete nonlinear generic problems on each sub-domain [τi, τi+1]



ln-op(un+1 − un) + ∆τBn-opun = 0, ∀n ∈ {1, · · · , Nτi},

un|x=0 = 0,

uNτi |x = hi(x),

lim
x→+∞

un|x = h(x),

(77)

where the near optimal DPG operators are defined as Bn-op = BTG−1B, ln-op = BTG−1l. The
system of equations of (77) can be solved by a projected iterative solver such as Gradient descent
for different consecutive intervals till the time of maturity Beck (2014).
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Algorithm 1 Numerical algorithm for the double barrier option

Require: S0 ∈ [SL, SU ]
uN |S ← h(S)
for τi ∈ [t1, tN ] do

for τij ∈ [τi, τi+1] do
if S is in [SL, SU ] then

un|S=0 = 0,
uNτi |S→∞ = h(S),
uNτi |S = hi(S),

Solve the sub-partial differential equation 77.

else if S is out of [SL, SU ] then

The option will be knocked out!

end if
end for

end for

5.6. Numerical Experiments

Here we solve the standard test problem solved in Kim et al. (2014) problem. We use the DPG
method to price a barrier option with volatility σ = 0.2, interest rate r = 0.1, strike price K = 100,
and upper and lower boundary of SL = 95, and SU = 125 respectively. It is known that a trading
year includes 250 working days, and a working week has five days. In this example, we report
the numerical estimate for daily and weekly monitoring. In another words, if we take T = 1 (half
year T = 0.5) for one trading year, then time increments of ∆t = 0.004 (half year ∆t = 0.002)
corresponds with daily check and ∆ = 0.02 (half year ∆t = 0.01) corresponds to weekly check.
Using the first-order DPG method with Ns = 100 spatial element, Nt = 100 stepping time, and
enriched test space with ∆p = 2, the desired results will accomplish.

Fig. (11) depicts the surface of the price of the barrier option with the two primal and ultraweak
formulations, as we expect this option is cheaper than the European option due to the convenience
that brings for the trader. Moreover, in spite of the non–smooth boundary condition the surface
of the price is smooth and stable.

We prepared Fig. (12) to show the price of the barrier option with the aforementioned market
parameters. The primal and ultraweak formulation is implemented to find the value of the option
by checking both weekly and Daily for the barriers. One difficulty in pricing barrier options is that
the value of the option can be oscillatory near the barriers of SL, and SU , whereas the illustrations
show the stable and smooth behavior of the price for the value of stock price close to the boundaries.

Table (4) compares the accuracy of the DPG method with the path integral method Milev and
Tagliani (2010), and MPCM method Kim et al. (2007). In this experiment, we see the value of
the option for daily and weekly monitoring when the price of the underlying asset is S = 95,
S = 95.0001, S = 124.9999, and S = 125 when barriers are [SL, SU ] = [95, 125]. As we mentioned
before the numerical scheme can have unstable behavior close to barriers, and in this example, we
try to catch the accuracy of the method when the stock price is in a very close neighborhood of
barriers. As can be seen, the DPG method is accurate and very close to the recorded value in Milev
and Tagliani (2010), and Kim et al. (2007).
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Primal DPG Ultraweak DPG

Figure 11. Surface of the price of barrier option, σ = 0.2, r =0.1, K=100, [SL, Sp] = [95, 125] via
DPG method.
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Figure 12. Value of Barrier option with DPG method

6. Sensitivity Analysis with Greeks

In this section, we use the DPG methodology to calculate the sensitivity of option pricing under the
Black-Scholes model. Sensitivity of the option with respect to model parameters, Greeks, explains
the reaction of the option value to the fluctuation of the market environment. Greeks are compasses
in the trader’s hand to find the correct direction in the hope of hedging their portfolio by buffering
against market changes.

Thus, the efficiency and accuracy of the numerical scheme are of paramount importance to trace
the option price changes when the state of the market changes. Let u(s, t) be the solution of Black-
Scholes partial differential (21) with the appropriate boundary condition pertaining to that specific

option, and α is the desired parameter for which we want to see the changes of price, then ∂u(x,t)
∂α

which for simplicity it will be denoted by uα(x, t) is the sensitivity. This sensitivity can be found
with the direct method or dual method (the avid readers can see Damircheli and Bhatia (2019)).
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Table 4. Double Barrier option with σ = 0.2, r = 0.1, T = 0.5, K = 100, L = 95, U = 125

S Reference Method Weekly checking Daily checking

95

Milev Milev and Tagliani (2010) Path integral 1.04584 0.444389

Kim Kim et al. (2007) MPCM 1.04581 0.444374
Primal DPG 1.04584 0.444387
Ultraweak DPG 1.04583 0.444388

95.0001

Milev Milev and Tagliani (2010) Path integral 1.04584 0.444426

Monte Carlo 107 paths 1.0457 0.44431
Kim Kim et al. (2007) MPCM 1.04584 0.444412

Primal DPG 1.04583 0.444413

Ultraweak DPG 1.04583 0.444412

124.9999

Milev Milev and Tagliani (2010) Path integral 0.70735 0.284354

Monte Carlo 107 paths 0.70731 0.28442

Kim Kim et al. (2007) MPCM 0.707343 0.284354
Primal DPG 0.707334 0.284352

Ultraweak DPG 0.707336 0.284354

125

MilevMilev and Tagliani (2010) Path integral 0.707313 0.284337
Kim Kim et al. (2007) MPCM 0.707322 0.284334

Primal DPG 0.707319 0.284333
Ultraweak DPG 0.707321 0.284335

Taking the derivative with respect to the parameter α from Black-Scholes PDE (21, one can find
a system of partial differential equation that seeks for uα(x, t)

∂uα
∂t

+
∂

∂α
(
σ2

2
x2)

∂u2

∂x2
+
σ2

2
x2∂u

2
α

∂x2
+

∂

∂α
(rx)

∂u

∂x
+ rx

∂uα
∂x
− ∂r

∂α
u(x, t)− ruα = 0. (78)

Note, the u(x, t) is already evaluated the value of the option in the initial state of parameter α
(see Seydel and Seydel (2006) for more detail). One can develop a DPG formulation either primal
or ultraweak for solving the PDE presented in (78) to find the desired sensitivity of uα(x, t) with
appropriate boundary condition. In this paper, we study the first and second derivative of price
with respect to the underlying asset that are named as Delta and Gamma respectively.

To start, it is worth mentioning that in the ultraweak formulation of DPG method (for example
see (32)) inherently and implicitly we are evaluating the Delta since our primary trail variables
are (u(x, t), ∂u/∂x). Fig. (13) the numerical result of ultraweak solution of the Asian option pricing
problem as an example is prepared to show how Delta can implicitly be calculated without extra
computational cost for recalculation of sensitivity.

However, one can indirectly find the Gamma and Delta of Asian option with ultraweak formu-
lation and primal formulation Fig. (14) using the PDE (78) for different volatility of the market.

It is well–known that Delta is positive for call options Fig. (15a) and negative for put option
Fig. (16a), whereas Gamma is always positive for both call options Fig. (15b) and put options
Fig. (16b). Fig. (15) is prepared to illustrate Delta and Gamma of the European call option for
different times to maturity, strike price K = 100, r = 0.05, and σ = 0.15 with primal DPG
method. The sensitivity of the European put option with the same market parameters is depicted
in Fig. (16) using the ultraweak DPG method.

Admittedly, the American option is one of the most attractive options for market makers since
they have the right to exercise the contract once they find the appropriate moment based on
their hedging strategy. Thus, not only the monitoring Delta is important, but practitioners are
curious about the rate of change in Delta itself (Gamma) for each one-basis point movement in
the underlying asset. However, we can expect that the free boundary attained by the early exercise
feature has a significant impact on the sensitivity of the option as well. Fig. (17) shows the violation
in Delta and Gamma for an American Put option based on the Primal DPG method in the different

31



April 16, 2024 Quantitative Finance main

40 60 80 100 120 140

0

20

40

60

Time

S
to

ck
P

ri
ce

σ = 0.05
σ = 0.1
σ = 0.2
σ = 0.3

(a) Value of Asian option

40 60 80 100 120 140
−0.5

0

0.5

1

Time

D
el

ta

σ = 0.05
σ = 0.1
σ = 0.2
σ = 0.3

(b) Delta for Asian option

Figure 13. Computing the Delta for Asian option alongside the value of the option with the ultra-
weak DPG method for different volatilises
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Figure 14. Greeks of Asian option with primal DPG method

time to maturities. As we can see this chaotic behavior as the time approaches maturity increases
such that at t = 0.01 shortly after locking the option we have smooth behavior like the European
option and at time t = 1.0 we have maximum fluctuation.

Greeks for barrier option with the double barrier SL = 95, and SU = 125 has shown in Fig. (18),
and Fig. (19) using DPG method for different initial stock price S0 = 95.0001, S0 = 100. Both
figures show that the sensitivity has sinusoidal behavior around the barriers when the underlying
price is close to 95, and 125. One can see that in both cases rate of change in price and Delta are
more smooth for weekly checking the barriers in comparison to daily check of the barrier which
stands to reason.
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Figure 15. Greek of European call option with Primal DPG, r=0.05, σ=0.15, K=100

0 50 100 150 200

−1

−0.8

−0.6

−0.4

−0.2

0

stock Price

D
el

ta

t = 1.0
t = 0.2
t = 0.4
t = 0.5

(a) Delta with Ultraweak DPG

50 100 150 200

0

0.5

1

1.5

2

2.5
·10−2

Stock Price

G
am

m
a

t = 1.0
t = 0.2
t = 0.4
t = 0.5

(b) Gamma with Ultraweak DPG

Figure 16. Greek of European Put option with ultraweak DPG, r=0.05, σ=0.15, K=100

7. Conclusion

In this manuscript, a numerical scheme based on the discontinuous Petrov–Galerkin (DPG) is
proposed to deal with the option pricing problem as one of the most important branches of quan-
titative finance. The Black-Scholes PDE arisen from option pricing is a special member of the
family of the convection-diffusion problem which is known for being unstable in the case of having
a convention-dominant term. The DPG method automatically yields a stable numerical method
to estimate the solution of the very same PDE. In this investigation, we derived detailed DPG
formulations for European, American, Asian, and Barrier options, and their sensitivity. Besides,
computational experiments is performed to inspect the numerical efficiency of the method for each
option and corresponding Greek.
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Figure 17. Greeks of American Put option with primal DPG, r=0.05, σ=0.15,K=100
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Figure 18. Greeks of Barrier option for weekly and daily, p=2, Nt = 25, S0=95.0001
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